COMP7120/8120 Cryptography and Data Security

Trusted Intermediaries - Key Distribution Center
Trusted Key Servers

• How do a large number of users authenticate each other?
 - inefficient / impractical for every pair of users to negotiate a secret key or share passwords

• Alternative: everybody shares a key with (and authenticates to) a single trusted third-party
Trusted Intermediaries

• Problem: authentication for large networks

• Solution #1
 - Key Distribution Center (KDC)
 • Representative solution: Kerberos
 - Based on secret key cryptography

• Solution #2
 - Public Key Infrastructure (PKI)
 - Based on public key cryptography
Key Distribution Center (KDC)

- Shared keys between the *Key Distribution Center (KDC)* and users

Q: Can users establish the same key with KDC?
(Simplified) Example of Use

- Alice wishes to communicate securely with Bob; Alice has previously negotiated K_{A-KDC} with the KDC, Bob has negotiated K_{B-KDC}

1. Alice requests from the KDC a session key to use with Bob
2. KDC generates session key K_S, sends to Alice, encrypted with K_{A-KDC}
3. KDC also sends K_S to Bob, encrypted with K_{B-KDC}
 - Alice and Bob can then communicate using K_S
Assessment

• Simplifies mutual authentication / key negotiation, but...
 - secure against attacks?
 • if KDC cheats ...
 - robust to failures?
 • if KDC fails ...
 - efficient?
A Hierarchy of KDCs

• For an Internet, not practical to have a single KDC
 - instead, imagine one KDC per domain
• To communicate securely with user in your own domain, just contact your domain’s KDC
• To talk with user in another domain, your KDC needs to contact the other domain’s KDC
 - KDCs must be able to authenticate each other and communicate securely
Hierarchy... (cont’d)

Domain 1

A → K_{A-K1} → KDC-1 → B → K_{B-K1} → C

Domain 2

E → K_{E-K2} → KDC-2 → D → K_{D-K2}
Mediated Authentication (With KDC)

KDC operation (in principle)

Alice wants to talk to Bob

Alice

KDC operation (in principle)

KDC

Bob

• Some concerns
 - Trudy may claim to be Alice and talk to KDC
 • Trudy cannot get anything useful
 - Messages encrypted by Alice using K_{AB} may arrive at Bob before KDC’s message $K_{Bob}{K_{AB}}$ arrive
Mediated Authentication (With KDC)

KDC operation (in practice)

Alice \[\xrightarrow{K_{\text{Alice}}\{K_{AB}\}, \ K_{\text{Bob}}\{K_{AB}\}}\] \(\xrightarrow{\text{Generate } K_{\text{AB}}}\) KDC \(\xrightarrow{\text{I’m Alice, here is my ticket: } K_{\text{Bob}}\{K_{AB}\}}\) Bob

- Must be followed by a mutual authentication exchange
 - To confirm that Alice and Bob have the same key
Needham-Schroeder Protocol

- Classic protocol for authentication with KDC
 - Many others have been modeled after it (e.g., Kerberos)

Alice wants to talk to Bob

KDC

Bob

Q: Why N_1, N_2, N_3?
Needham-Schroeder Protocol (Cont’d)

• A vulnerability
 - When Trudy gets a previous key used by Alice, Trudy may reuse a previous ticket issued to Bob for Alice
 - Essential reason
 • The ticket to Bob stays valid even if Alice changes her key
Expanded Needham-Schroeder Protocol

I want to talk to you

$K_{Bob}\{N_B\}$

Generate K_{AB}; extract N_B

N_1, Alice wants Bob, $K_{Bob}\{N_B\}$

$K_{Alice}\{N_1, "Bob", K_{AB}, ticket\ to\ Bob\}$, where $ticket\ to\ Bob = K_{Bob}\{K_{AB}, Alice, N_B\}$

$K_{AB}\{N_2\}$

ticket to Bob, $K_{AB}\{N_2\}$

$K_{AB}\{N_2-1, N_3\}$

$K_{AB}\{N3-1\}$