COMP7120/8120 Cryptography and Data Security

Authentication
Authentication

- Authentication is the process of reliably verifying certain information.

- Examples
 - **Message authentication**
 - Verify that a message has not been altered without proper authorization.
 - We have already learned: CBC-MAC, HMAC, RSA, ...
 - **User authentication**
 - Allow a user to prove his/her identity to another entity (e.g., a system, a device).
Authentication Mechanisms

- Password-based authentication
 - Use a secret quantity (the password) that the prover states to prove he/she knows it.
 - Threat: password guessing/dictionary attack
 - a dictionary attack is to try a large number of possibilities of passwords.

Alice: I’m Alice, the password is fiddlesticks

Computer System
Authentication Mechanisms (Cont’d)

- Address-based authentication
 - Assume the identity of the source can be inferred based on the network address from which packets arrive.
 - Threat: Spoof of network address
 - Not authentication of source addresses
Authentication Mechanisms (Cont’d)
• Cryptographic authentication protocols
 - Basic idea:
 • A prover proves some information by performing a cryptographic operation on a quantity that the verifier supplies.
 - Usually reduced to the knowledge of a secret value
 • A symmetric key
 • The private key of a public/private key pair
User Authentication
Authentication and Identity

• What is identity?
 - which characteristics uniquely identifies a person?
 - do we care if identity is unique?

• Authentication: verify a user’s identity
 - a supplicant wishes to be authenticated
 - a verifier performs the authentication
User Authentication Can Be Based On...

- **What the user knows**
 - passwords, personal information, a key, a credit card number, etc.

- **Where** the user is or can be reached
 - email address, IP address, ...

- **Physical characteristics** of the user
 - fingerprints, voiceprint, signature dynamics, iris pattern, DNA, etc.

- **What** the user has in their possession
 - smart card, (physical) key, USB token, ...
Password Authentication
Password-Based User Authentication

- User demonstrates knowledge of a secret value to authenticate
 - most common method of user authentication
Some Issues for Password Systems

• A password should be easy to remember but hard to guess
 - that’s difficult to achieve!

• Some questions
 - what makes a good password?
 - where is the password stored, and in what form?
 - how is knowledge of the password verified?
Password Storage

• Storing unencrypted passwords in a file is high risk
 - compromising the file system compromises all the stored passwords
• Better idea: use the password to compute a one-way function (e.g., a hash, an encryption), and store the output of the one-way function
• When a user inputs the requested password...
 1. compute its one-way function
 2. compare with the stored value
Attacks on Passwords

• Suppose passwords can be from 1 to 9 characters in length

• Possible choices for passwords = 26^1 + 26^2 + \ldots + 26^9 = 5 \times 10^{12}

• At the rate of 1 password per millisecond, it will take on the order of 150 years to test all passwords

• Unfortunately, not all passwords are equally likely to be used
Example of a Study

- In a sample of over 3000 passwords:
 - 500 were easily guessed versions of dictionary words or first name / last name
 - 86% of passwords were easily guessed
Common Password Choices

- Pet names
- Common names
- Common words
- Dates
- Variations of above (backwards, append a few digits, etc.)
Dictionary Attacks

• Attack 1 (online):
 - Create a dictionary of common words and names and their simple transformations
 - Use these to guess the password

Dictionary

Eagle
Wine
Rose
...

Eagle

Yes!
Dictionary Attacks (Cont’d)

- **Attack 2 (offline):**
 - Usually F is public and so is the password file
 - Most of the time, F is known hash function
 - Compute $F(word)$ for each word in the dictionary
 - A match gives the password

```
Eagle  Wine  Rose  ...

F(Eagle)=XkPT

TdWx%  XkPT  KYEN  ...

Dictionary  Password file
```
Password Salt

- To make the dictionary attack a bit more difficult
- Salt is a n-bit number between 0 and 2^n
- Derived from, for example, the system clock and the process identifier
Password Salt (Cont’d)

- Storing the passwords

\[F(\text{Password} + \text{Salt}) \]

\[F \]

\[\text{Password file} \]

\[\text{Username, Salt, } F(\text{Password} + \text{Salt}) \]

\(F \) is usually a hash function
Password Salt (Cont’d)

• Verifying the passwords

\[F(\text{Password} + \text{Salt}) \]

Fetch Salt according to username

Password file

Username, Salt, \(F(\text{Password} + \text{Salt}) \)

Compare
Password Guidelines For Users

1. Initial passwords are system-generated, have to be changed by user on first login
2. User must change passwords periodically
3. Passwords vulnerable to a dictionary attack are rejected
4. User should not use same password on multiple sites
Other Password Attacks

• Technical
 - eavesdropping on traffic that may contain unencrypted passwords
 - “Trojan horse” password entry programs

• “Social”
 - careless password handling or sharing
 - phishing
The S/Key Protocol
Using “Disposable” Passwords

- Simple idea: generate a long list of passwords, use each only one time
 - attacker gains little/no advantage by eavesdropping on password protocol, or cracking one password

- Disadvantages
 - storage overhead
 - users would have to memorize lots of passwords!

- Alternative: the S/Key protocol
 - based on use of one-way (e.g. hash) function
S/Key Password Generation

1. Alice selects a password x

2. Alice specifies n, the number of passwords to generate

3. Alice’s computer then generates a sequence of passwords
 - $x_1 = H(x)$
 - $x_2 = H(x_1)$
 - ...
 - $x_n = H(x_{n-1})$
4. Alice communicates (securely) to a server the last value in the sequence: x_n

- **Key feature**: no one knowing x_i can easily find an x_{i-1} such that $H(x_{i-1}) = x_i$
 - only Alice possesses that information
Authentication Using S/Key

- Assuming server is in possession of x_i ...

\[H(x_{i-1}) = x_i \]

Is dictionary attack still possible?
Limitations

• Value of n limits number of passwords
 - need to periodically regenerate a new chain of passwords

• Does not authenticate server! Example attack:
 1. real server sends i to fake server, which is pretending to be Alice
 2. fake server sends i to Alice, who responds with x_{i-1}
 3. fake server then presents x_{i-1} to real server
Biometrics

- Relies upon physical characteristics of people to authenticate them
- Desired properties
 1. uniquely identifying
 2. very difficult to forge / mimic
 3. highly accurate
 4. easy to scan or collect
 5. fast to measure / compare
 6. inexpensive to implement
Assessment

• Convenient for users (e.g., you always have your fingerprints, never have to remember them), but...
 - potentially troubling sacrifice of private information
 - no technique yet has all the desired properties
<table>
<thead>
<tr>
<th>Biometrics</th>
<th>Universality</th>
<th>Uniqueness</th>
<th>Permanence</th>
<th>Collectability</th>
<th>Performance</th>
<th>Acceptability</th>
<th>Circumvention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face</td>
<td>H</td>
<td>L</td>
<td>M</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>Fingerprint</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>Hand Geometry</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Keystroke Dynamics</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Hand vein</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>Iris</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Retina</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>Signature</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>Voice</td>
<td>M</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>Facial Thermogram</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>M</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>DNA</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

H=High, M=Medium, L=Low
Example Biometric Technologies

- Signature / penmanship
- Fingerprints
- DNA
- Palm geometry
- Retina scan
- Iris scan
- Face recognition
- Voice recognition
Behavior Authentication

- Human behavior depends on a person’s habit, education, living environment, family,
 - Alice frequently uses web browser to read news,
 - Bob likes to press on keyboard very hard,
 - Eve uses two hands to operate her cellphone.

- Data from computers/sensors reflects human behavior, and can be sometimes used to authenticate the identity of a person.